
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013                                                                    755 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

SCHEDULING IN INSTANCE-INTENSIVE 
COST-CONSTRAINED WORKFLOWS IN A 

CLOUD 
S. Mukute, G. Hapanyengwi, B. Mapako, B. M. Nyambo, A. Mudzagada 

 

Abstract—Cloud computing has been growing tremendously, as it has been accepted recently. Cloud computing has many unique strengths which 
can be utilized to facilitate workflow execution. This paper investigates the issue of dynamic scheduling in cloud computing with a special attention to the 
case of instance-intensive cost-constrained workflows. This paper seeks to address the following issues: A study of this ‘new’ technology taking its grad-
ual migration from Grid computing, their similarities, differences, weaknesses and strengths. Also there will be a study on the metrics of comparing exist-
ing scheduling algorithms with a comparison on how they are fairing. Lastly this paper seeks to propose a dynamic scheduling algorithm that will be 
based on a simulation model. In this research the problem of workflow scheduling has been discussed. The efficiency of the proposed algorithm was 
tested in comparison with the fixed algorithm that come along with the simulator used (CloudSim 2.1). 

  

Index Terms— Scheduling , Cost, Cloud, Instance- Intensive Workflows, Cost Constrained Workflows  

——————————      —————————— 

1 INTRODUCTION                                                                     

  loud computing can be viewed as an extension of paral-
lel computing and distributed computing. It provides 

secure, quick, convenient data storage and computing power 
with the help of the internet. Figure 1, shows an overview of 
cloud computing. Virtualization, distribution and dynamic 
extendibility are the basic characteristics of cloud computing. 
These days most software and hardware have provided sup-
port to virtualization. Factors that can be virtualized and man-
aged on a cloud computing platform include software, hard-
ware, operating system and net storage. Efficient scheduling 
algorithms are required for us to make effective use of the 
tremendous capabilities of the cloud. There is a need to opti-
mally dispatch workflows to the cloud resources. Scheduling 
algorithms try to minimize the total completion time of the 
workflows in the cloud by finding the most suitable resources 
to be allocated to the workflows [1].   
 
A workflow enables the structuring of applications in a di-
rected acyclic graph form, where each node represents the 
constituent task and edges represent inter-task dependencies 
of the applications. A single workflow generally consists of a 
set of tasks each of which communicates with each other in a 
sequentially dependent order. Workflow scheduling is one of 
the key issues in the management of workflow execution [2]. 
An instance is a single execution occurrence of a workflow at a 
particular time. Instance-intensive cloud workflows are work-
flows with a huge number of instances concurrently running 
on a distributed environment. Examples of instance-intensive 
workflows include processes like bank cheque processing, 
insurance claim processing and many other e-business and e-
government scenarios. In a bank cheque processing scenario, 
where millions of cheque-processing transactions need to be 
processed concurrently each day, while each of them is a ra-

ther simple workflow with only a few steps. Considering in-
stance-intensive workflows, the mean execution time, becomes 
a more important criterion of scheduling instance-intensive 
workflows than execution time of individual instances [3]. 

 
 

Fig. 1 Overview of cloud computing [1] 
 
 
Moving workflows to a cloud computing environment enables 
the utilization of various cloud services to facilitate workflow 
execution. In contrast to dedicated resources, the resources in 
clouds are shared and provided to users ‘‘on-demand’’, mean-
ing the expenditure on hardware for workflow execution are 
eliminated. The ‘‘user-centric’’ model in a cloud computing 
environment makes workflow execution more user-friendly 
thus increasing user satisfaction. The ‘‘pay as you go’’ business 
model in a cloud can reduce the execution cost of workflows 
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[3]. There is, therefore, a need to migrate workflow executions 
to cloud computing platforms. However, on a commercial 
cloud platform, users need to pay for what they use. Assum-
ing these instance-intensive workflows have cost-constraints 
and are executed on cloud computing platforms, we call them 
instance-intensive cost-constrained cloud workflows.  
In this paper we seek to propose a dynamic scheduling algo-
rithm that will be based on a simulation model. 
 

2 RELATED WORK 
 

Many researchers have come up with different proposals of 
implementing scheduling algorithms in both distributed sys-
tems and cloud computing environments. Listed below are 
some of the examples:  
 

a) A Compromised-Time-Cost Scheduling Algorithm: Ke 
Liu, Hai Jin, Jinjun Chen, Xiao Liu, Dong Yuan, Yun 
Yang [3]. This algorithm encompassed the issue of in-
stance-intensive cost c0nstrained workflows by reduc-
ing the execution cost at the expense of execution time 
within user designated deadlines. The environment 
used was SwinDeW-C (Swinburne Decentralised 
Workflow for Cloud) as the tool for simulation.  

b)   A Particle Swarm Optimization-based Heuristic for 
Scheduling Workflow Applications: Suraj Pandey, Lin-
linWu, Siddeswara Mayura Guru, Rajkumar Buyya [4] 
heuristic based algorithm to schedule applications to 
cloud resources taking into consideration the computa-
tion and communication costs.  

c) Improved Cost-Based Algorithm for Task Scheduling: 
Mrs.S.Selvarani, Dr.G.Sudha Sadhasivam [4]. The idea 
behind this algorithm was to make an efficient im-
provement in the mapping of accrued costs. The algo-
rithm also considered computational/communication 
cost ratio. 

d) Resource-Aware-Scheduling algorithm (RASA): Saeed 
Parsa and Reza Entezari-Maleki [Error! Reference 
source not found.] proposed a new task scheduling al-
gorithm RASA. This algorithm is a fusion of the tradi-
tional Max-min and Min-min algorithms. This algo-
rithm was mostly duelling on the execution cost, arrival 
time and deadline for the tasks without considering the 
communication costs. 

e) Innovative transaction intensive cost-constraint sched-
uling algorithm: Yun Yang, Ke Liu, Jinjun Chen [Error! 
Reference source not found.]. The thrust on this algo-
rithm was on execution cost and time within specified 
user designated times. 

f) Scalable Heterogeneous Earliest-Finish-Time Algorithm 
(SHEFT): Cui Lin, Shiyong Lu [8] proposed a workflow 
scheduling algorithm to schedule a workflow elastically 
on a Cloud computing environment which they named 
SHEFT. This algorithm achieved optimization of execu-
tion time while achieving elastic scalability at runtime. 

g)  Multiple QoS Constrained Scheduling Strategy of Mul-
ti-Workflows (MQMW): Meng Xu, Lizhen Cui, Haiyang 
Wang, Yanbing Bi [9] worked on multiple workflows 
and multiple QoS. They have a strategy implemented 
for multiple workflow management system with multi-
ple QoS. The scheduling access rate is increased by us-
ing this strategy. This strategy minimizes the make span 
and cost of workflows for cloud computing platform.  

 

Mathematical Formulation of Scheduling Problems   
Scheduling problems can generally be associated with the 
popularly and vastly researched Job Shop Problem. The gen-
eral idea of this problem is summarized by Brucker P [10]: 
The job-shop problem can be formulated as follows. Given are 
m machines M1,M2,...,Mm and n jobs J1,J2,..., Jn. Job Jj consists of 
nj operations 푂 푖 = 1, …푛  which have to be processed in 
the order 푂 ,푂 , …푂 . It is convenient to enumerate all 
operations of all jobs by k = 1, ...,N where N = Pnj=1 nj . For each 
operation k = 1, ...,N we have a processing time pk > 0 and a 
dedicated machine M(k) and k must be processed for pk time 
units without preemptions on M (k). Additionally a dummy 
starting operation 0 and a dummy finishing operation N + 1, 
each with zero processing time, are introduced. We assume 
that for two succeeding operations k = Oij and s (k) = Oi+1,j of 
the same job M (k) 6= M (s (k)) holds. Let Sk be the starting 
time of operation k. Then Ck = Sk + pk is the finishing time of k 
and (Sk) defines a schedule. A schedule (Sk) is feasible if for any 
succeeding operations k and s (k) of the same job Sk + pk ≤ 
Ss(k) holds and for two operations k and h with M (k) = M 
(h)either Sk + pk ≤ Sh or Sh + ph ≤ Sk. One has to find a feasible 
schedule (Sk) which minimizes the make span maxN k=1 Ck. 
 

Scheduling Problems 
The author considered k machines Mj (j=1,…,k) that are re-
quired to process n jobs. A schedule can be defined as an allo-
cation of ≥1 time intervals to ≥1 machines [10]. 
Now we consider each job Ji to comprise of predefined number 
ni of operations Oi1,…,Oi,ni. We also have to note that for each 
operation Oij , jεni there is an associated processing require-
ment Pij. In addition to this, each operation Oij is associated 
with µijε(M1,…,Mk)recalling that jε(1,…,k). In simplicity we 
are saying: if O12 is associated µ15 it is interpreted as saying 
operation number 2 of job task 1 has been scheduled to ma-
chine number 5. There is also need to define two scenarios 
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here: 
Dedicated machines: all µij can be one element set. 
Parallel machines [Multipurpose Machines]: All µij = Mj 
(j=1,…,k) 
Finally we have the cost function fi(t). This parameter may be 
defined by two parameters due date di and weight wi. 

Definition of parameters: 
Generally all scheduling algorithms can be depicted as a three-
field variable: α| β| γ [10] where:  
The variable α denotes the machine environment (usually the 
number of machines)  
The variable β denotes the job (workflow) characteristics.  
   The variable γ denotes the optimality criterion in the sched-
uling algorithm under consideration. 
Parameter α is defined further as a string with two parameters 
α1α2. If 훼 = 표	 → 	훼 = 훼 . The substring α1 is further de-
composed to:  

훼 ∈ (o, P, Q, R. PMPM, QMPM, G, X, O, J, F) 
In most research works of this level the elements G, X, O, J and 
F are ignored. 
This instance is interpreted as saying each job Ji has a single 
operation and should be processed on a single specified dedi-
cated machine; hence no scheduling will be employed in this 
case. 
α1=P: this implies that we have identical parallel machines. 
Thus we have Pij for job Ji on Mi, Pij=Pi for all jε(1,…,k)  
α1=Q: we have uniform parallel machines thus we have  

푃 =
푃
푠  

where sj in this case denotes the processing speed of machine 
Mj 
α1=R: this is the case where we have unrelated parallel ma-
chines that are Pij for job dependant speeds sij of Mj 
α1=PMPM and α1=QMPM then we have multi-purpose ma-
chines with identical and uniform speeds respectively. 
In scheduling algorithms the β parameter is usually represent-
ed as a six-fold string thus: 

β = (β1,…,β6). 
 β1: determines whether there is preemption or not 
 β2: denotes precedence relations between jobs. This 

string is usually represented an acyclic directed graph 
G= (V,A) where 푉 = (1, …푛) implying the jobs pre-
sent and also (푖, 푘)휖	퐴 ↔ 퐽  must be accomplished 
before Jk thus β2 will be set: 

훽 = 푝푟푒푐 
 훽 = 푟   , where i = (1,…, n) this notation is interpret-

ed as representing the release dates for each respec-
tive job operation Ji. 

 β4: specifies the number of operations for each job Ji 
 β5=di ,  denotes the deadline for each job Ji 

 β6: denotes the batch processing problems 
 γ: is the job optimality criterion. 

The finishing time for job Ji is denoted by Ci and the associated 
cost by fi(Ci). Basically there are two functions that depict total 
cost. 

푓 (퐶) = max	(푓 	(푐 )|푖 = 1. . 푘) 
which is the bottleneck problem and  
∑푓 (퐶) = ∑(푓 (퐶 )|푖 = 1, . .푘)  the sum objectives. 

 

3 METHODOLOGY 
As demonstrated in this document, the numbering for sections 
upper case Arabic numerals, then upper case Arabic numerals, 
separated by periods. Initial paragraphs after the section title 
are not indented. Only the initial, introductory paragraph has 
a drop cap. 
 

Designing of the proposed algorithm 
 
The following is a listing of the assumptions that will be used 
in this paper: 
 Cost depends on the time slot chewed by each operation 

Oij on a particular machine 

 The set µij=(M1,…M3) 

 Assume the workflow is a predefined query of fixed size 
in bits 

 All workflows as the name implies are similar in size 

 Associate with each Mj a predefined bandwidth (which 
will be represented by speed sj denoted in the simulation 
environment by MIPS) 

 To Mj associate a corresponding cost cj which is inter-
preted as cost per unit time 

The parameters used in this simulation will be: 
α1=Q: we have uniform parallel machines thus we have Pij=Pi/sj 

where sj in this case denotes the processing speed of machine 
Mj for jε(1,…,3) 
β4: which specifies the number of operations for each work-
flow Ji for jε(1,…,3) 

훾 = 푓 (퐶) = 푚푎푥 푓 푐 |푖, 푗 = 1,2, .  
Clear clarification need to be made on the optimal criterion. In 
this paper we will minimize as much as possible the ultimate 
cost since attention is from the client side. 
Basing on the definitions made above: 
We can define  
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푃 =
푂
푠  

and this in units is: 
 

∗ 푠 = 푠, recalling s denotes time 
Thus we get a result which reflects time usage on a particular 
machine on a given operation for a specific workflow. 
We define another variable  

푈 =
푂
푠 푐  

Whose units symbolically becomes: 
푀푏
푀푏 ∗ 푠 ∗

£
푠 = £ 

Now we have defined our γ which is cost and much attention 
will be from the client side. Thus our  

훾 = 푓 (퐶) = 푚푎푥 푓 푐 |푖, 푗 = 1,2, .  
Since the idea behind the proposed algorithm is to maximize 
costs from the client perspective,  

훾 = 푓 (퐶) = 푚푖푛 푓 푐 |푖, 푗 = 1,2, .  
Symbolically:  

훾 = 푚푖푛 푓 푐 |푖, 푗 = 1, 2. .  

 with   푓 푐 = 푈 = 푐  

Resource allocation to the various operations 
examples 

Table 1: Matrix assuming sequential allocation 

Operations 

Machine 
number 

O1 O2 O3 

M1  O11      O12 O13 

M2 O21 O22 O23 

M3 O31 O32 O33 

                                                  
A closer look shows that this degenerates to a sequential 
scheduling algorithm. Also interchanging the workflow alloca-
tion will not produce any differences.   

 

Table 2: Matrix assuming sequential allocation 

Operations 
Machine 
number 

O1 O2 O3 

M1 O21      O22 O33 
M2 O11 O32 O13 
M3 O31 O12 O23 

    
 The above again is similar on terms of total time regardless of 
the order used. 
*Critical observation: 푇(푂 ) = 푇 푂   for all k!=g and k ,g 
ε(1,2,3) and i ε(1,2,3) provided they have been allocated to the 
same machine Mj. 
The matrices can go on and on and the above were done just 
as an illustration. Also note that it is not assumed that the dif-
ferent operations have similar duration but it is meant to 
demonstrate the scenario only. 
As a matter of simplifying the situation the author suggests: 
Assume we let O11=x     O12=y       O13=z 
 
 Table 3: Simplification of resource allocation 

Operations 

Machine 
number 

X Y Z 

M1 x y z 

M2 x y z 

M3 x y z 

  
Note the order in which the operations are arranged. 
 
From the above matrices we can come up with the following 
permutations: 

x1+y1+z1 
x1+y1+z2 
x1+y1+z3 

Here, x and y operations are confined to M1 

x1+y2+z1 
x1+y2+z2 
x1+y2+z3 

In this case, x and y operations are confined to M1 to M2 re-
spectively 

x1+y3+z1 
x1+y3+z2 
x1+y3+z3 

Here, x and y operations are confined to M1 to M3 respectively 
Where: 
xi means that operation x has been allocated to machine i. 
yi means that operation y has been allocated to machine i. 
zi means that operation z has been allocated to machine i. 
The three set of equations have been done to demonstrate the 
situation when x has been allocated fixed to machine M1 with y 
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varying but constant at each occurrence. 

Since we have defined our criterion function we can proceed 
to model proposed algorithm. 
N.B:  The subscripts on s and c denote the particular machine 
to which a particular instance has been allocated. There are 3 
machines and 3 operations thus there are a possible 81 permu-
tations. Thus to simplify the situation 3 parameters i, j and k 
are introduced to loop through all the possible iterations. 
 
Table 4: A summary of the calculations at each loop 

i=0 

푈 =
푥
푠 푐  

 

j=0 

푈 =
푦
푠 푐  

k=0 

푈 =
푧
푠 푐  

i=1 

푈 =
푥
푠 푐  

 

j=1 

푈 =
푦
푠 푐  

 

k=1 

푈 =
푧
푠 푐  

i=2 

푈 =
푥
푠 푐  

 

j=2 

푈 =
푦
푠 푐  

 

k=2 

푈 =
푧
푠 푐  

 

 

The proposed algorithm in pseudo code 
 
 (Procedure 1 
 While i=0 
     (for (j=0; j<3;j++) 
        (for (k=0; k<3;k++) 
         Do 
Calculate U; 
Return min (U) 
 (Increment i+=1; 
Repeat procedure 1 
) 
(Increment 1+=1; 
Repeat procedure 1 
) 
Return min Procedure 1, 2, 3 
Schedule as from result above 
 

4. RESULTS AND ANALYSIS 
 
The environment used to simulate the algorithm is an inbuilt 
component of the CloudSim version 2.1. Results were input 
through the command prompt line. CloudSim 2.1 is a JAVA 

coded environment that allows the user to code, compile and 
run the user’s own input programs. The proposed algorithm 
was fed with following fixed RAM  size of  2048MB and fixed 
WORKFLOW SIZE:10 000MB. The different processing capa-
bilities of the three simulated machines were modelled by the 
varying MIPS on each instance. We compared our algorithm 
with the CloudSim 2.1 algorithm. Table 6 shows the results 
after running 8 simulations for each of the algorithms.   
DS (£): This value denotes the accumulated debt after imple-
menting the proposed (Dynamic Scheduling) algorithm. CS 
(£):  This value denotes the accumulated debt after implement-
ing the inbuilt (CloudSim) algorithm. Figure 5 below is a 
graphical representation of the results obtained. 
 
 
Table 5: Comparison of results from the proposed algorithm 
to the CloudSim 2.1 algorithm 

Run # MIPS 
(M1, M2, M3) 

DS(£) 
 

CS(£) 
 

Run1 75, 105, 90 98.134 102.32 
Run2 100, 120, 105 104.55 104.99 
Run3 150, 135, 115 109.987 112.48 
Run4 200, 160, 120 113.26 121.241 
Run5 250, 175, 125 116.26 141.624 
Run6 350, 250, 130 125.3809 159.3808 
Run7 400, 275, 180 184.8837 209.13 
Run8 500, 350, 250 212.51 224.83 

 
 

 
Figure 1: Graphical presentation of the results obtained. 

The aim of this research was to make an improvement (reduc-
tion) on the cost from the client side of view. The above table 
and graphical presentation are meant to show the difference in 
performance from the two algorithms.  
Initially, the total cost incurred for processing all the three 
workflows was almost similar for both DS and CS, as evidence 
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with the progress from Run 1 to Run 3. As the processing 
power overally increases (Run3 to Run 4), there is a notable 
dominance of DS over CS. A sharp increase is noted from Run 
4 to Run 6 which however steadies till the end of the simula-
tion (Run 8). This can be attributed to the ability of DS to op-
timize scheduling of available resources to requesting job 
(workflows) problems at a particular instance in time unlike 
CS algorithm which allocates resources regardless of optimum 
ability but according to previously configured scenarios. The 
scope of this research is to optimize resources utilization and 
allocation whilst minimizing the total cost incurred by the cli-
ent. 

5. CONLUSION 
In this research the problem of workflow scheduling has been 
discussed. In day to day practice, industry and academia in-
teract with workflow aware and unaware. The efficiency of the 
proposed algorithm was tested in comparison with the fixed 
algorithm that come along with the simulator used (CloudSim 
2.1). The results show that the proposed algorithm produces a 
better efficiency in terms of cost with particular attention to 
the client side. From the simulated results, it is clear that the 
proposed dynamic algorithm is superior to the static algo-
rithm to which it was compared. This observation is made in 
line with cost reduction which obviously is beneficial to the 
client side. The work presented in this paper can be expanded 
and improved in many directions. Some of the improvements 
that can be noted are to incorporate the issue of maximizing 
the use of bandwidth amongst different clients, making a sen-
sible reduction in the communication time amongst the differ-
ent virtual machines in consideration and also inclusion of 
different size tasks that would need to share the available re-
sources.  
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