
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 755
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

SCHEDULING IN INSTANCE-INTENSIVE
COST-CONSTRAINED WORKFLOWS IN A

CLOUD
S. Mukute, G. Hapanyengwi, B. Mapako, B. M. Nyambo, A. Mudzagada

Abstract—Cloud computing has been growing tremendously, as it has been accepted recently. Cloud computing has many unique strengths which
can be utilized to facilitate workflow execution. This paper investigates the issue of dynamic scheduling in cloud computing with a special attention to the
case of instance-intensive cost-constrained workflows. This paper seeks to address the following issues: A study of this ‘new’ technology taking its grad-
ual migration from Grid computing, their similarities, differences, weaknesses and strengths. Also there will be a study on the metrics of comparing exist-
ing scheduling algorithms with a comparison on how they are fairing. Lastly this paper seeks to propose a dynamic scheduling algorithm that will be
based on a simulation model. In this research the problem of workflow scheduling has been discussed. The efficiency of the proposed algorithm was
tested in comparison with the fixed algorithm that come along with the simulator used (CloudSim 2.1).

Index Terms— Scheduling , Cost, Cloud, Instance- Intensive Workflows, Cost Constrained Workflows

—————————— ——————————

1 INTRODUCTION

 loud computing can be viewed as an extension of paral-
lel computing and distributed computing. It provides

secure, quick, convenient data storage and computing power
with the help of the internet. Figure 1, shows an overview of
cloud computing. Virtualization, distribution and dynamic
extendibility are the basic characteristics of cloud computing.
These days most software and hardware have provided sup-
port to virtualization. Factors that can be virtualized and man-
aged on a cloud computing platform include software, hard-
ware, operating system and net storage. Efficient scheduling
algorithms are required for us to make effective use of the
tremendous capabilities of the cloud. There is a need to opti-
mally dispatch workflows to the cloud resources. Scheduling
algorithms try to minimize the total completion time of the
workflows in the cloud by finding the most suitable resources
to be allocated to the workflows [1].

A workflow enables the structuring of applications in a di-
rected acyclic graph form, where each node represents the
constituent task and edges represent inter-task dependencies
of the applications. A single workflow generally consists of a
set of tasks each of which communicates with each other in a
sequentially dependent order. Workflow scheduling is one of
the key issues in the management of workflow execution [2].
An instance is a single execution occurrence of a workflow at a
particular time. Instance-intensive cloud workflows are work-
flows with a huge number of instances concurrently running
on a distributed environment. Examples of instance-intensive
workflows include processes like bank cheque processing,
insurance claim processing and many other e-business and e-
government scenarios. In a bank cheque processing scenario,
where millions of cheque-processing transactions need to be
processed concurrently each day, while each of them is a ra-

ther simple workflow with only a few steps. Considering in-
stance-intensive workflows, the mean execution time, becomes
a more important criterion of scheduling instance-intensive
workflows than execution time of individual instances [3].

Fig. 1 Overview of cloud computing [1]

Moving workflows to a cloud computing environment enables
the utilization of various cloud services to facilitate workflow
execution. In contrast to dedicated resources, the resources in
clouds are shared and provided to users ‘‘on-demand’’, mean-
ing the expenditure on hardware for workflow execution are
eliminated. The ‘‘user-centric’’ model in a cloud computing
environment makes workflow execution more user-friendly
thus increasing user satisfaction. The ‘‘pay as you go’’ business
model in a cloud can reduce the execution cost of workflows

C

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 756
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[3]. There is, therefore, a need to migrate workflow executions
to cloud computing platforms. However, on a commercial
cloud platform, users need to pay for what they use. Assum-
ing these instance-intensive workflows have cost-constraints
and are executed on cloud computing platforms, we call them
instance-intensive cost-constrained cloud workflows.
In this paper we seek to propose a dynamic scheduling algo-
rithm that will be based on a simulation model.

2 RELATED WORK

Many researchers have come up with different proposals of
implementing scheduling algorithms in both distributed sys-
tems and cloud computing environments. Listed below are
some of the examples:

a) A Compromised-Time-Cost Scheduling Algorithm: Ke
Liu, Hai Jin, Jinjun Chen, Xiao Liu, Dong Yuan, Yun
Yang [3]. This algorithm encompassed the issue of in-
stance-intensive cost c0nstrained workflows by reduc-
ing the execution cost at the expense of execution time
within user designated deadlines. The environment
used was SwinDeW-C (Swinburne Decentralised
Workflow for Cloud) as the tool for simulation.

b) A Particle Swarm Optimization-based Heuristic for
Scheduling Workflow Applications: Suraj Pandey, Lin-
linWu, Siddeswara Mayura Guru, Rajkumar Buyya [4]
heuristic based algorithm to schedule applications to
cloud resources taking into consideration the computa-
tion and communication costs.

c) Improved Cost-Based Algorithm for Task Scheduling:
Mrs.S.Selvarani, Dr.G.Sudha Sadhasivam [4]. The idea
behind this algorithm was to make an efficient im-
provement in the mapping of accrued costs. The algo-
rithm also considered computational/communication
cost ratio.

d) Resource-Aware-Scheduling algorithm (RASA): Saeed
Parsa and Reza Entezari-Maleki [Error! Reference
source not found.] proposed a new task scheduling al-
gorithm RASA. This algorithm is a fusion of the tradi-
tional Max-min and Min-min algorithms. This algo-
rithm was mostly duelling on the execution cost, arrival
time and deadline for the tasks without considering the
communication costs.

e) Innovative transaction intensive cost-constraint sched-
uling algorithm: Yun Yang, Ke Liu, Jinjun Chen [Error!
Reference source not found.]. The thrust on this algo-
rithm was on execution cost and time within specified
user designated times.

f) Scalable Heterogeneous Earliest-Finish-Time Algorithm
(SHEFT): Cui Lin, Shiyong Lu [8] proposed a workflow
scheduling algorithm to schedule a workflow elastically
on a Cloud computing environment which they named
SHEFT. This algorithm achieved optimization of execu-
tion time while achieving elastic scalability at runtime.

g) Multiple QoS Constrained Scheduling Strategy of Mul-
ti-Workflows (MQMW): Meng Xu, Lizhen Cui, Haiyang
Wang, Yanbing Bi [9] worked on multiple workflows
and multiple QoS. They have a strategy implemented
for multiple workflow management system with multi-
ple QoS. The scheduling access rate is increased by us-
ing this strategy. This strategy minimizes the make span
and cost of workflows for cloud computing platform.

Mathematical Formulation of Scheduling Problems
Scheduling problems can generally be associated with the
popularly and vastly researched Job Shop Problem. The gen-
eral idea of this problem is summarized by Brucker P [10]:
The job-shop problem can be formulated as follows. Given are
m machines M1,M2,...,Mm and n jobs J1,J2,..., Jn. Job Jj consists of
nj operations 푂 푖 = 1, …푛 which have to be processed in
the order 푂 ,푂 , …푂 . It is convenient to enumerate all
operations of all jobs by k = 1, ...,N where N = Pnj=1 nj . For each
operation k = 1, ...,N we have a processing time pk > 0 and a
dedicated machine M(k) and k must be processed for pk time
units without preemptions on M (k). Additionally a dummy
starting operation 0 and a dummy finishing operation N + 1,
each with zero processing time, are introduced. We assume
that for two succeeding operations k = Oij and s (k) = Oi+1,j of
the same job M (k) 6= M (s (k)) holds. Let Sk be the starting
time of operation k. Then Ck = Sk + pk is the finishing time of k
and (Sk) defines a schedule. A schedule (Sk) is feasible if for any
succeeding operations k and s (k) of the same job Sk + pk ≤
Ss(k) holds and for two operations k and h with M (k) = M
(h)either Sk + pk ≤ Sh or Sh + ph ≤ Sk. One has to find a feasible
schedule (Sk) which minimizes the make span maxN k=1 Ck.

Scheduling Problems
The author considered k machines Mj (j=1,…,k) that are re-
quired to process n jobs. A schedule can be defined as an allo-
cation of ≥1 time intervals to ≥1 machines [10].
Now we consider each job Ji to comprise of predefined number
ni of operations Oi1,…,Oi,ni. We also have to note that for each
operation Oij , jεni there is an associated processing require-
ment Pij. In addition to this, each operation Oij is associated
with µijε(M1,…,Mk)recalling that jε(1,…,k). In simplicity we
are saying: if O12 is associated µ15 it is interpreted as saying
operation number 2 of job task 1 has been scheduled to ma-
chine number 5. There is also need to define two scenarios

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 757
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

here:
Dedicated machines: all µij can be one element set.
Parallel machines [Multipurpose Machines]: All µij = Mj
(j=1,…,k)
Finally we have the cost function fi(t). This parameter may be
defined by two parameters due date di and weight wi.

Definition of parameters:
Generally all scheduling algorithms can be depicted as a three-
field variable: α| β| γ [10] where:
The variable α denotes the machine environment (usually the
number of machines)
The variable β denotes the job (workflow) characteristics.
 The variable γ denotes the optimality criterion in the sched-
uling algorithm under consideration.
Parameter α is defined further as a string with two parameters
α1α2. If 훼 = 표	 → 	훼 = 훼 . The substring α1 is further de-
composed to:

훼 ∈ (o, P, Q, R. PMPM, QMPM, G, X, O, J, F)
In most research works of this level the elements G, X, O, J and
F are ignored.
This instance is interpreted as saying each job Ji has a single
operation and should be processed on a single specified dedi-
cated machine; hence no scheduling will be employed in this
case.
α1=P: this implies that we have identical parallel machines.
Thus we have Pij for job Ji on Mi, Pij=Pi for all jε(1,…,k)
α1=Q: we have uniform parallel machines thus we have

푃 =
푃
푠

where sj in this case denotes the processing speed of machine
Mj
α1=R: this is the case where we have unrelated parallel ma-
chines that are Pij for job dependant speeds sij of Mj
α1=PMPM and α1=QMPM then we have multi-purpose ma-
chines with identical and uniform speeds respectively.
In scheduling algorithms the β parameter is usually represent-
ed as a six-fold string thus:

β = (β1,…,β6).
 β1: determines whether there is preemption or not
 β2: denotes precedence relations between jobs. This

string is usually represented an acyclic directed graph
G= (V,A) where 푉 = (1, …푛) implying the jobs pre-
sent and also (푖, 푘)휖	퐴 ↔ 퐽 must be accomplished
before Jk thus β2 will be set:

훽 = 푝푟푒푐
 훽 = 푟 , where i = (1,…, n) this notation is interpret-

ed as representing the release dates for each respec-
tive job operation Ji.

 β4: specifies the number of operations for each job Ji
 β5=di , denotes the deadline for each job Ji

 β6: denotes the batch processing problems
 γ: is the job optimality criterion.

The finishing time for job Ji is denoted by Ci and the associated
cost by fi(Ci). Basically there are two functions that depict total
cost.

푓 (퐶) = max	(푓 	(푐)|푖 = 1. . 푘)
which is the bottleneck problem and
∑푓 (퐶) = ∑(푓 (퐶)|푖 = 1, . .푘) the sum objectives.

3 METHODOLOGY
As demonstrated in this document, the numbering for sections
upper case Arabic numerals, then upper case Arabic numerals,
separated by periods. Initial paragraphs after the section title
are not indented. Only the initial, introductory paragraph has
a drop cap.

Designing of the proposed algorithm

The following is a listing of the assumptions that will be used
in this paper:
 Cost depends on the time slot chewed by each operation

Oij on a particular machine

 The set µij=(M1,…M3)

 Assume the workflow is a predefined query of fixed size
in bits

 All workflows as the name implies are similar in size

 Associate with each Mj a predefined bandwidth (which
will be represented by speed sj denoted in the simulation
environment by MIPS)

 To Mj associate a corresponding cost cj which is inter-
preted as cost per unit time

The parameters used in this simulation will be:
α1=Q: we have uniform parallel machines thus we have Pij=Pi/sj

where sj in this case denotes the processing speed of machine
Mj for jε(1,…,3)
β4: which specifies the number of operations for each work-
flow Ji for jε(1,…,3)

훾 = 푓 (퐶) = 푚푎푥 푓 푐 |푖, 푗 = 1,2, .
Clear clarification need to be made on the optimal criterion. In
this paper we will minimize as much as possible the ultimate
cost since attention is from the client side.
Basing on the definitions made above:
We can define

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 758
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

푃 =
푂
푠

and this in units is:

∗ 푠 = 푠, recalling s denotes time
Thus we get a result which reflects time usage on a particular
machine on a given operation for a specific workflow.
We define another variable

푈 =
푂
푠 푐

Whose units symbolically becomes:
푀푏
푀푏 ∗ 푠 ∗

£
푠 = £

Now we have defined our γ which is cost and much attention
will be from the client side. Thus our

훾 = 푓 (퐶) = 푚푎푥 푓 푐 |푖, 푗 = 1,2, .
Since the idea behind the proposed algorithm is to maximize
costs from the client perspective,

훾 = 푓 (퐶) = 푚푖푛 푓 푐 |푖, 푗 = 1,2, .
Symbolically:

훾 = 푚푖푛 푓 푐 |푖, 푗 = 1, 2. .

 with 푓 푐 = 푈 = 푐

Resource allocation to the various operations
examples

Table 1: Matrix assuming sequential allocation

Operations

Machine
number

O1 O2 O3

M1 O11 O12 O13

M2 O21 O22 O23

M3 O31 O32 O33

A closer look shows that this degenerates to a sequential
scheduling algorithm. Also interchanging the workflow alloca-
tion will not produce any differences.

Table 2: Matrix assuming sequential allocation

Operations
Machine
number

O1 O2 O3

M1 O21 O22 O33
M2 O11 O32 O13
M3 O31 O12 O23

 The above again is similar on terms of total time regardless of
the order used.
*Critical observation: 푇(푂) = 푇 푂 for all k!=g and k ,g
ε(1,2,3) and i ε(1,2,3) provided they have been allocated to the
same machine Mj.
The matrices can go on and on and the above were done just
as an illustration. Also note that it is not assumed that the dif-
ferent operations have similar duration but it is meant to
demonstrate the scenario only.
As a matter of simplifying the situation the author suggests:
Assume we let O11=x O12=y O13=z

 Table 3: Simplification of resource allocation

Operations

Machine
number

X Y Z

M1 x y z

M2 x y z

M3 x y z

Note the order in which the operations are arranged.

From the above matrices we can come up with the following
permutations:

x1+y1+z1
x1+y1+z2
x1+y1+z3

Here, x and y operations are confined to M1

x1+y2+z1
x1+y2+z2
x1+y2+z3

In this case, x and y operations are confined to M1 to M2 re-
spectively

x1+y3+z1
x1+y3+z2
x1+y3+z3

Here, x and y operations are confined to M1 to M3 respectively
Where:
xi means that operation x has been allocated to machine i.
yi means that operation y has been allocated to machine i.
zi means that operation z has been allocated to machine i.
The three set of equations have been done to demonstrate the
situation when x has been allocated fixed to machine M1 with y

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 759
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

varying but constant at each occurrence.

Since we have defined our criterion function we can proceed
to model proposed algorithm.
N.B: The subscripts on s and c denote the particular machine
to which a particular instance has been allocated. There are 3
machines and 3 operations thus there are a possible 81 permu-
tations. Thus to simplify the situation 3 parameters i, j and k
are introduced to loop through all the possible iterations.

Table 4: A summary of the calculations at each loop

i=0

푈 =
푥
푠 푐

j=0

푈 =
푦
푠 푐

k=0

푈 =
푧
푠 푐

i=1

푈 =
푥
푠 푐

j=1

푈 =
푦
푠 푐

k=1

푈 =
푧
푠 푐

i=2

푈 =
푥
푠 푐

j=2

푈 =
푦
푠 푐

k=2

푈 =
푧
푠 푐

The proposed algorithm in pseudo code

 (Procedure 1
 While i=0
 (for (j=0; j<3;j++)
 (for (k=0; k<3;k++)
 Do
Calculate U;
Return min (U)
 (Increment i+=1;
Repeat procedure 1
)
(Increment 1+=1;
Repeat procedure 1
)
Return min Procedure 1, 2, 3
Schedule as from result above

4. RESULTS AND ANALYSIS

The environment used to simulate the algorithm is an inbuilt
component of the CloudSim version 2.1. Results were input
through the command prompt line. CloudSim 2.1 is a JAVA

coded environment that allows the user to code, compile and
run the user’s own input programs. The proposed algorithm
was fed with following fixed RAM size of 2048MB and fixed
WORKFLOW SIZE:10 000MB. The different processing capa-
bilities of the three simulated machines were modelled by the
varying MIPS on each instance. We compared our algorithm
with the CloudSim 2.1 algorithm. Table 6 shows the results
after running 8 simulations for each of the algorithms.
DS (£): This value denotes the accumulated debt after imple-
menting the proposed (Dynamic Scheduling) algorithm. CS
(£): This value denotes the accumulated debt after implement-
ing the inbuilt (CloudSim) algorithm. Figure 5 below is a
graphical representation of the results obtained.

Table 5: Comparison of results from the proposed algorithm
to the CloudSim 2.1 algorithm

Run # MIPS
(M1, M2, M3)

DS(£)

CS(£)

Run1 75, 105, 90 98.134 102.32
Run2 100, 120, 105 104.55 104.99
Run3 150, 135, 115 109.987 112.48
Run4 200, 160, 120 113.26 121.241
Run5 250, 175, 125 116.26 141.624
Run6 350, 250, 130 125.3809 159.3808
Run7 400, 275, 180 184.8837 209.13
Run8 500, 350, 250 212.51 224.83

Figure 1: Graphical presentation of the results obtained.

The aim of this research was to make an improvement (reduc-
tion) on the cost from the client side of view. The above table
and graphical presentation are meant to show the difference in
performance from the two algorithms.
Initially, the total cost incurred for processing all the three
workflows was almost similar for both DS and CS, as evidence

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 760
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

with the progress from Run 1 to Run 3. As the processing
power overally increases (Run3 to Run 4), there is a notable
dominance of DS over CS. A sharp increase is noted from Run
4 to Run 6 which however steadies till the end of the simula-
tion (Run 8). This can be attributed to the ability of DS to op-
timize scheduling of available resources to requesting job
(workflows) problems at a particular instance in time unlike
CS algorithm which allocates resources regardless of optimum
ability but according to previously configured scenarios. The
scope of this research is to optimize resources utilization and
allocation whilst minimizing the total cost incurred by the cli-
ent.

5. CONLUSION
In this research the problem of workflow scheduling has been
discussed. In day to day practice, industry and academia in-
teract with workflow aware and unaware. The efficiency of the
proposed algorithm was tested in comparison with the fixed
algorithm that come along with the simulator used (CloudSim
2.1). The results show that the proposed algorithm produces a
better efficiency in terms of cost with particular attention to
the client side. From the simulated results, it is clear that the
proposed dynamic algorithm is superior to the static algo-
rithm to which it was compared. This observation is made in
line with cost reduction which obviously is beneficial to the
client side. The work presented in this paper can be expanded
and improved in many directions. Some of the improvements
that can be noted are to incorporate the issue of maximizing
the use of bandwidth amongst different clients, making a sen-
sible reduction in the communication time amongst the differ-
ent virtual machines in consideration and also inclusion of
different size tasks that would need to share the available re-
sources.

6. REFERENCES

1. Sujit Tilak , Dipti Patil, A Survey of Various Scheduling Algorithms
in Cloud Environment, International Journal of Engineering Inven-
tions, Volume 1, Issue 2 (September)

2. Yogita Chawla, Mansi Bhonsle ,International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS), Volume 1, Is-
sue 3, September – October 2012

3. K Liu, Hai Jin, Jinjun Chen, Xiao Liu, Dong Yuan, Yun Yang, A

Compromised-Time-Cost Scheduling Algorithm in SwinDeW-C for
Instance-Intensive Cost-Constrained Workflows on a Cloud Com-
puting Platform. The International Journal of High Performance
Computing Applications, Sage, Volume 24 Issue 4, November 2010
Pages 445-456

4. Suraj Pandey; LinlinWu; Siddeswara Mayura Guru; Rajkumar Buy-
ya, A Particle Swarm Optimization-based Heuristic for Scheduling
Workflow Applications in Cloud Computing Environments.24th
IEEE International Conference on Advanced Information Network-
ing and Applications (AINA), 20-23 April 2010

5. S.Selvarani, G.Sudha Sadhasivam, Improved Cost-Based Algorithm

for Task Scheduling. Computational Intelligence and Computing
Research ICCIC 2010 IEEE International Conference on (2010) IEEE,
Pages: 1-5

6. Saeed Parsa and Reza Entezari-Maleki, RASA: A New Task

Scheduling Algorithm in Grid Environment, World Applied
Sciences, pp. 152-160, 2009.

7. K Liu, Hai Jin, Jinjun Chen, Xiao Liu, Dong Yuan, Yun Yang, An

Algorithm in SwinDeW-C for Transaction-Intensive Cost-
Constrained Cloud Workflows .Proc of 4th IEEE International Con-
ference on e-Science,Indianapolis, USA, December 2008, (pp :374-
375).

8. Cui Lin, Shiyong Lu, Scheduling Scientific Workflows Elastically for

Cloud Computing. IEEE, 4th International Conference on Cloud
Computing, 2011 (pp 746-747).

9. Meng Xu, Lizhen Cui, Haiyang Wang, Yanbing Bi, Multiple QoS

Constrained Scheduling Strategy of Multi-Workflows (MQMW).
Parallel and Distributed Processing with Applications, 2009 IEEE,
(pp: 629 – 634).

10. Peter Brucker. The Job-Shop Problem: Old and New Challenges.

The 3rd Multidisciplinary International Conference on Scheduling:
Theory and Applications. (MISTA 2007) Paris, France (28 - 31 Aug
2007).

11. Brucker P, Scheduling Algorithms, 4th ed.: Springer, 2004. (pp: 5-6).

